Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Harnessing the microbiome to prevent global biodiversity loss

Abstract

Global biodiversity loss and mass extinction of species are two of the most critical environmental issues the world is currently facing, resulting in the disruption of various ecosystems central to environmental functions and human health. Microbiome-targeted interventions, such as probiotics and microbiome transplants, are emerging as potential options to reverse deterioration of biodiversity and increase the resilience of wildlife and ecosystems. However, the implementation of these interventions is urgently needed. We summarize the current concepts, bottlenecks and ethical aspects encompassing the careful and responsible management of ecosystem resources using the microbiome (termed microbiome stewardship) to rehabilitate organisms and ecosystem functions. We propose a real-world application framework to guide environmental and wildlife probiotic applications. This framework details steps that must be taken in the upscaling process while weighing risks against the high toll of inaction. In doing so, we draw parallels with other aspects of contemporary science moving swiftly in the face of urgent global challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microbiome stewardship as a potential tool to mitigate anthropogenic impacts.
Fig. 2: Proposed evidence-based framework for microbiome stewardship.

Similar content being viewed by others

References

  1. Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 461, 472–475 (2009).

  2. Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article  PubMed  Google Scholar 

  3. Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Wake, D. B. & Vredenburg, V. T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl Acad. Sci. USA 105, 11466–11473 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sweet, M., Burian, A. & Bulling, M. Corals as canaries in the coalmine: towards the incorporation of marine ecosystems into the ‘One Health’ concept. J. Invertebr. Pathol. 186, 107538 (2021).

    Article  PubMed  Google Scholar 

  6. Flandroy, L. et al. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci. Total Environ. 627, 1018–1038 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).

    Article  PubMed  Google Scholar 

  9. Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013).

    Article  PubMed  Google Scholar 

  10. Doering, T. et al. Towards enhancing coral heat tolerance: a ‘microbiome transplantation’ treatment using inoculations of homogenized coral tissues. Microbiome 9, 102 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rosado, P. M. et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J. 13, 921–936 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Santos, H. F. et al. Impact of oil spills on coral reefs can be reduced by bioremediation using probiotic microbiota. Sci. Rep. 5, 18268 (2015).

    Article  Google Scholar 

  13. Santoro, E. P. et al. Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. Sci. Adv. 7, eabg3088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Silva, D. P. et al. Multi-domain probiotic consortium as an alternative to chemical remediation of oil spills at coral reefs and adjacent sites. Microbiome 9, 118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoyt, J. R. et al. Field trial of a probiotic bacteria to protect bats from white-nose syndrome. Sci. Rep. 9, 9158 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bletz, M. C. et al. Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use. Ecol. Lett. 16, 807–820 (2013).

    Article  PubMed  Google Scholar 

  17. Daisley, B. A. et al. Lactobacillus spp. attenuate antibiotic-induced immune and microbiota dysregulation in honey bees. Commun. Biol. 3, 534 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Powell, J. E., Carver, Z., Leonard, S. P. & Moran, N. A. Field-realistic tylosin exposure impacts honey bee microbiota and pathogen susceptibility, which is ameliorated by native gut probiotics. Microbiol. Spectr. 9, e0010321 (2021).

    Article  PubMed  Google Scholar 

  19. Borges, D., Guzman-Novoa, E. & Goodwin, P. H. Effects of prebiotics and probiotics on honey bees (Apis mellifera) infected with the microsporidian parasite Nosema ceranae. Microorganisms 9, 481 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Daisley, B. A. et al. Novel probiotic approach to counter Paenibacillus larvae infection in honey bees. ISME J. 14, 476–491 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Trinder, M. et al. Probiotic Lactobacillus rhamnosus reduces organophosphate pesticide absorption and toxicity to Drosophila melanogaster. Appl. Environ. Microbiol. 82, 6204–6213 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Enquist, B. J., Abraham, A. J., Harfoot, M. B. J., Malhi, Y. & Doughty, C. E. The megabiota are disproportionately important for biosphere functioning. Nat. Commun. 11, 699 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Knowlton, N. et al. Rebuilding Coral Reefs: A Decadal Grand Challenge. (International Coral Reef Society, Future Earth Coasts, 2021).

  24. Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jaspers, C. et al. Resolving structure and function of metaorganisms through a holistic framework combining reductionist and integrative approaches. Zoology 133, 81–87 (2019).

    Article  PubMed  Google Scholar 

  26. Bosch, T. C. G. & McFall-Ngai, M. J. Metaorganisms as the new frontier. Zoology 114, 185–190 (2011).

    Article  PubMed  Google Scholar 

  27. Wilkins, L. G. E. et al. Host-associated microbiomes and their roles in marine ecosystem functions. PLoS Biol. 17, e3000533 (2019).

  28. Humphreys, C. P. et al. Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat. Commun. 1, 103 (2010).

    Article  PubMed  Google Scholar 

  29. Koskella, B. & Bergelson, J. The study of host-microbiome (co)evolution across levels of selection. Phil. Trans. R. Soc. Lond. B 375, 20190604 (2020).

    Article  Google Scholar 

  30. Keller-Costa, T. et al. Metagenomic insights into the taxonomy, function, and dysbiosis of prokaryotic communities in octocorals. Microbiome 9, 72 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guerra, C. A. et al. Global projections of the soil microbiome in the Anthropocene. Glob. Ecol. Biogeogr. 30, 987–999 (2021).

    Article  PubMed  Google Scholar 

  32. Weinbauer, M. G. & Rassoulzadegan, F. Extinction of microbes: evidence and potential consequences. Endanger. Species Res. 3, 205–215 (2007).

    Article  Google Scholar 

  33. Petersen, C. & Round, J. L. Defining dysbiosis and its influence on host immunity and disease. Cell. Microbiol. 16, 1024–1033 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hanski, I. et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl Acad. Sci. USA 109, 8334–8339 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Blaser, M. J. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat. Rev. Immunol. 17, 461–463 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Balbín-Suárez, A. et al. Root exposure to apple replant disease soil triggers local defense response and rhizoplane microbiome dysbiosis. FEMS Microbiol. Ecol. 97, fiab031 (2021).

  37. Erlacher, A., Cardinale, M., Grosch, R., Grube, M. & Berg, G. The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Front. Microbiol. 5, 175 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shahi, F., Redeker, K. & Chong, J. Rethinking antimicrobial stewardship paradigms in the context of the gut microbiome. JAC Antimicrob. Resist. 1, dlz015 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Voolstra, C. R. & Ziegler, M. Adapting with microbial help: microbiome flexibility facilitates rapid responses to environmental change. Bioessays 42, e2000004 (2020).

    Article  PubMed  Google Scholar 

  40. McBurney, M. I. et al. Establishing what constitutes a healthy human gut microbiome: state of the science, regulatory considerations, and future directions. J. Nutr. 149, 1882–1895 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Voolstra, C. R. et al. Extending the natural adaptive capacity of coral holobionts. Nat. Rev. Earth Environ. 2, 747–762 (2021).

    Article  Google Scholar 

  42. Woodhams, D. C. et al. Prodigiosin, violacein, and volatile organic compounds produced by widespread cutaneous bacteria of amphibians can inhibit two Batrachochytrium fungal pathogens. Microb. Ecol. 75, 1049–1062 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Voyles, J. et al. Shifts in disease dynamics in a tropical amphibian assemblage are not due to pathogen attenuation. Science 359, 1517–1519 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Harris, R. N. et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 3, 818–824 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Peixoto, R. S., Harkins, D. M. & Nelson, K. E. Advances in microbiome research for animal health. Annu. Rev. Anim. Biosci. 9, 289–311 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Blanck, H. & Wängberg, S.-Å. Induced community tolerance in marine periphyton established under arsenate stress. Can. J. Fish. Aquat. Sci. 45, 1816–1819 (1988).

    Article  Google Scholar 

  47. French, E., Kaplan, I., Iyer-Pascuzzi, A., Nakatsu, C. H. & Enders, L. Emerging strategies for precision microbiome management in diverse agroecosystems. Nat. Plants 7, 256–267 (2021).

    Article  PubMed  Google Scholar 

  48. Borges, N. et al. Bacteriome structure, function, and probiotics in fish larviculture: the good, the bad, and the gaps. Annu. Rev. Anim. Biosci. 9, 423–452 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. De Schryver, P. & Vadstein, O. Ecological theory as a foundation to control pathogenic invasion in aquaculture. ISME J. 8, 2360–2368 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sonnenschein, E. C., Jimenez, G., Castex, M. & Gram, L. The Roseobacter-group bacterium Phaeobacter as a safe probiotic solution for aquaculture. Appl. Environ. Microbiol. 87, e0258120 (2021).

    Article  PubMed  Google Scholar 

  51. Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Peixoto, R. S., Sweet, M. & Bourne, D. G. Customized medicine for corals. Front. Mar. Sci. 6, 686 (2019).

  53. Quraishi, M. N. et al. Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment. Pharmacol. Ther. 46, 479–493 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Henrick, B. M. et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 184, 3884–3898.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Freedman, S. B. et al. Multicenter trial of a combination probiotic for children with gastroenteritis. N. Engl. J. Med. 379, 2015–2026 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Cabana, M. D. et al. Early probiotic supplementation for eczema and asthma prevention: a randomized controlled trial. Pediatrics 140, e20163000 (2017).

  57. Matsumoto, H. et al. Bacterial seed endophyte shapes disease resistance in rice. Nat. Plants 7, 60–72 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. D’Alvise, P. W. et al. Phaeobacter gallaeciensis reduces Vibrio anguillarum in cultures of microalgae and rotifers, and prevents vibriosis in cod larvae. PLoS ONE 7, e43996 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dittmann, K. K. et al. Changes in the microbiome of mariculture feed organisms after treatment with a potentially probiotic strain of Phaeobacter inhibens. Appl. Environ. Microbiol. 86, e00499-20 (2020).

  60. Metchnikoff, E. The Prolongation of Life: Optimistic Studies (Heinemann, 1907).

  61. Khanna, S., Jones, C., Jones, L., Bushman, F. & Bailey, A. Increased microbial diversity found in successful versus unsuccessful recipients of a next-generation FMT for recurrent Clostridium difficile infection. Open Forum Infect. Dis 5, 304–309(2015).

  62. Kachrimanidou, M. & Tsintarakis, E. Insights into the role of human gut microbiota in Clostridioides difficile infection. Microorganisms 8, 200 (2020).

  63. Aggarwala, V. et al. Precise quantification of bacterial strains after fecal microbiota transplantation delineates long-term engraftment and explains outcomes. Nat. Microbiol. 6, 1309–1318 (2021).

  64. Zachow, C., Müller, H., Tilcher, R., Donat, C. & Berg, G. Catch the best: novel screening strategy to select stress protecting agents for crop plants. Agronomy 3, 794–815 (2013).

    Article  Google Scholar 

  65. Berg, G., Kusstatscher, P., Abdelfattah, A., Cernava, T. & Smalla, K. Microbiome modulation-toward a better understanding of plant microbiome response to microbial inoculants. Front. Microbiol. 12, 650610 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ehlers, R.-U. in Regulation of Biological Control Agents (ed. Ehlers, R.-U.) 3–23 (Springer Netherlands, 2011).

  67. CDC. V-Safe After Vaccination Health Checker https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/vsafe.html (2022).

  68. Bok, K., Sitar, S., Graham, B. S. & Mascola, J. R. Accelerated COVID-19 vaccine development: milestones, lessons, and prospects. Immunity 54, 1636–1651 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vestal, R. Fecal microbiota transplant. Hosp. Med. Clin. 5, 58–70 (2016).

    Article  Google Scholar 

  70. Jansen, J. W. Fecal microbiota transplant vs oral vancomycin taper: important undiscussed limitations. Clin. Infect. Dis. 64, 1292–1293 (2017).

    Article  PubMed  Google Scholar 

  71. Basson, A. R., Zhou, Y., Seo, B., Rodriguez-Palacios, A. & Cominelli, F. Autologous fecal microbiota transplantation for the treatment of inflammatory bowel disease. Transl. Res. 226, 1–11 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).

    Article  PubMed  Google Scholar 

  73. Slatko, B. E., Luck, A. N., Dobson, S. L. & Foster, J. M. Wolbachia endosymbionts and human disease control. Mol. Biochem. Parasitol. 195, 88–95 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Ahantarig, A. & Kittayapong, P. Endosymbiotic Wolbachia bacteria as biological control tools of disease vectors and pests. J. Appl. Entomol. 135, 479–486 (2011).

    Article  Google Scholar 

  75. Turner, J. et al. Extreme temperatures in the Antarctic. J. Clim. 34, 2653–2668 (2021).

    Article  Google Scholar 

  76. Schoennagel, T. et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl Acad. Sci. USA 114, 4582–4590 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Di Virgilio, G. et al. Climate change increases the potential for extreme wildfires. Geophys. Res. Lett. 46, 8517–8526 (2019).

    Article  Google Scholar 

  78. Liu, Y., Stanturf, J. & Goodrick, S. Trends in global wildfire potential in a changing climate. Ecol. Manage. 259, 685–697 (2010).

    Article  Google Scholar 

  79. Zhou, J. et al. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc. Natl Acad. Sci. USA 111, E836–E845 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wittebole, X., De Roock, S. & Opal, S. M. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 5, 226–235 (2014).

    Article  PubMed  Google Scholar 

  81. Sieiro, C. et al. A hundred years of bacteriophages: can phages replace antibiotics in agriculture and aquaculture? Antibiotics 9, 493 (2020).

  82. Rulkens, W. Increasing the environmental sustainability of sewage treatment by mitigating pollutant pathways. Environ. Eng. Sci. 23, 650–665 (2006).

  83. Obotey Ezugbe, E. & Rathilal, S. Membrane technologies in wastewater treatment: a review. Membranes 10, 89 (2020).

  84. Lee, C. S., Robinson, J. & Chong, M. F. A review on application of flocculants in wastewater treatment. Process Saf. Environ. Prot. 92, 489–508 (2014).

  85. Guo, W.-Q., Yang, S.-S., Xiang, W.-S., Wang, X.-J. & Ren, N.-Q. Minimization of excess sludge production by in-situ activated sludge treatment processes–a comprehensive review. Biotechnol. Adv. 31, 1386–1396 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Alvarez-Filip, L., Estrada-Saldívar, N., Pérez-Cervantes, E., Molina-Hernández, A. & González-Barrios, F. J. A rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. PeerJ 7, e8069 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Meiling, S. S. et al. Variable species responses to experimental stony coral tissue loss disease (SCTLD) exposure. Front. Mar. Sci. 8, 670829 (2021).

  88. Hunt, P. R. The C. elegans model in toxicity testing. J. Appl. Toxicol. 37, 50–59 (2017).

  89. Tkaczyk, A., Bownik, A., Dudka, J., Kowal, K. & Ślaska, B. Daphnia magna model in the toxicity assessment of pharmaceuticals: a review. Sci. Total Environ. 763, 143038 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Microbiota Vault. A Vault for Humanity https://www.microbiotavault.org/ (2021).

  91. Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria (FAO, WHO, 2001).

  92. Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R. & Rastall, R. A. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 16, 605–616 (2019).

    Article  PubMed  Google Scholar 

  93. Gibson, G. R. et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).

    Article  PubMed  Google Scholar 

  94. Salminen, S. et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18, 649–667 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Liu, A. et al. Adjunctive probiotics alleviates asthmatic symptoms via modulating the gut microbiome and serum metabolome. Microbiol. Spectr. 9, e0085921 (2021).

    Article  PubMed  Google Scholar 

  96. Bagga, D. et al. Probiotics drive gut microbiome triggering emotional brain signatures. Gut Microbes 9, 486–496 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Patel, R. M. & Underwood, M. A. Probiotics and necrotizing enterocolitis. Semin. Pediatr. Surg. 27, 39–46 (2018).

    Article  PubMed  Google Scholar 

  98. Tobias, J. et al. Bifidobacterium longum subsp. infantis EVC001 administration is associated with a significant reduction in the incidence of necrotizing enterocolitis in very low birth weight infants. J. Pediatr. https://doi.org/10.1016/j.jpeds.2021.12.070 (2022).

  99. Koziol, L. et al. The plant microbiome and native plant restoration: the example of native mycorrhizal fungi. Bioscience 68, 996–1006 (2018).

    Article  Google Scholar 

  100. Cabello, F. C. et al. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol. 15, 1917–1942 (2013).

    Article  PubMed  Google Scholar 

  101. Evensen, Ø. & Leong, J.-A. C. DNA vaccines against viral diseases of farmed fish. Fish. Shellfish Immunol. 35, 1751–1758 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Burridge, L., Weis, J. S., Cabello, F., Pizarro, J. & Bostick, K. Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture 306, 7–23 (2010).

    Article  CAS  Google Scholar 

  103. Kesarcodi-Watson, A., Kaspar, H., Lategan, M. J. & Gibson, L. Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274, 1–14 (2008).

    Article  Google Scholar 

  104. Irianto, A. & Austin, B. Probiotics in aquaculture. J. Fish. Dis. 25, 633–642 (2002).

    Article  Google Scholar 

  105. Assefa, A. & Abunna, F. Maintenance of fish health in aquaculture: review of epidemiological approaches for prevention and control of infectious disease of fish. Vet. Med. Int. 2018, 5432497 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hoseinifar, S. H., Sun, Y.-Z., Wang, A. & Zhou, Z. Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front. Microbiol. 9, 2429 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Castex, M., Leclercq, E., Lemaire, P. & Chim, L. Dietary probiotic Pediococcus acidilactici MA18/5M improves the growth, feed performance and antioxidant status of penaeid shrimp Litopenaeus stylirostris: a growth-ration-size approach. Animals 11, 3451 (2021).

  108. Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).

  109. Daisley, B. A., Chmiel, J. A., Pitek, A. P., Thompson, G. J. & Reid, G. Missing microbes in bees: how systematic depletion of key symbionts erodes immunity. Trends Microbiol. 28, 1010–1021 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Chmiel, J. A., Daisley, B. A., Burton, J. P. & Reid, G. Deleterious effects of neonicotinoid pesticides on Drosophila melanogaster immune pathways. Mbio 10, e01395-19 (2019).

  111. Daisley, B. A. et al. Microbiota-mediated modulation of organophosphate insecticide toxicity by species-dependent interactions with lactobacilli in a Drosophila melanogaster insect model. Appl. Environ. Microbiol. 84, e02820-17 (2018).

  112. Duarte, G. A. S. et al. Heat waves are a major threat to turbid coral reefs in Brazil. Front. Mar. Sci. 7, 179 (2020).

  113. Hughes, T. P. et al. Global warming impairs stock-recruitment dynamics of corals. Nature 568, 387–390 (2019).

    Article  CAS  PubMed  Google Scholar 

  114. Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  115. Barno, A. R., Villela, H. D. M., Aranda, M., Thomas, T. & Peixoto, R. S. Host under epigenetic control: a novel perspective on the interaction between microorganisms and corals. Bioessays 43, e2100068 (2021).

    Article  PubMed  Google Scholar 

  116. Welsh, R. M. et al. Alien vs. predator: bacterial challenge alters coral microbiomes unless controlled by Halobacteriovorax predators. PeerJ 5, e3315 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Peixoto, R. S. et al. Coral probiotics: premise, promise, prospects. Annu. Rev. Anim. Biosci. 9, 265–288 (2021).

    Article  PubMed  Google Scholar 

  118. Peixoto, R. S. et al. Beneficial Microorganisms for Corals (BMC): proposed mechanisms for coral health and resilience. Front. Microbiol. 8, 341 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Morgans, C. A., Hung, J. Y. & Bourne, D. G. Symbiodiniaceae probiotics for use in bleaching recovery. Restoration 28, 282–288 (2020).

  120. Zhang, Y. et al. Shifting the microbiome of a coral holobiont and improving host physiology by inoculation with a potentially beneficial bacterial consortium. BMC Microbiol. 21, 130 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Assis, J. M. et al. Delivering beneficial microorganisms for corals: rotifers as carriers of probiotic bacteria. Front. Microbiol. 11, 608506 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Zhou, G. et al. Changes in microbial communities, photosynthesis and calcification of the coral Acropora gemmifera in response to ocean acidification. Sci. Rep. 6, 35971 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. VanCompernolle, S. E. et al. Antimicrobial peptides from amphibian skin potently inhibit human immunodeficiency virus infection and transfer of virus from dendritic cells to T cells. J. Virol. 79, 11598–11606 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Harris, R. N., Lauer, A., Simon, M. A., Banning, J. L. & Alford, R. A. Addition of antifungal skin bacteria to salamanders ameliorates the effects of chytridiomycosis. Dis. Aquat. Organ. 83, 11–16 (2009).

    Article  PubMed  Google Scholar 

  126. Loudon, A. H. et al. Interactions between amphibians’ symbiotic bacteria cause the production of emergent anti-fungal metabolites. Front. Microbiol. 5, 441 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Muletz-Wolz, C. R. et al. Inhibition of fungal pathogens across genotypes and temperatures by amphibian skin bacteria. Front. Microbiol. 8, 1551 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Jin Song, S. et al. Engineering the microbiome for animal health and conservation. Exp. Biol. Med. 244, 494–504 (2019).

    Article  CAS  Google Scholar 

  129. Küng, D. et al. Stability of microbiota facilitated by host immune regulation: informing probiotic strategies to manage amphibian disease. PLoS ONE 9, e87101 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Micalizzi, E. W. & Smith, M. L. Volatile organic compounds kill the white-nose syndrome fungus, Pseudogymnoascus destructans, in hibernaculum sediment. Can. J. Microbiol. 66, 593–599 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Gabriel, K. T., Joseph Sexton, D. & Cornelison, C. T. Biomimicry of volatile-based microbial control for managing emerging fungal pathogens. J. Appl. Microbiol. 124, 1024–1031 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Woodhams, D. C., Bletz, M., Kueneman, J. & McKenzie, V. Managing amphibian disease with skin microbiota. Trends Microbiol. 24, 161–164 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.S.P. acknowledges funding from King Abdullah University of Science and Technology (grants FCC/1/1973-51-01 and BAS/1/1095-01-01). C.R.V. acknowledges funding from the German Research Foundation (DFG) (grants 433042944 and 458901010). J.W. acknowledges support from the Science Foundation Ireland (SFI) through an SFI Professorship (19/RP/6853) and a Centre award (APC/SFI/12/RC/2273_P2) to the APC Microbiome Ireland. L.G. acknowledges funding from the Danish National Research Foundation (DNRF137). Funding for this work came from NSF grant no. 1924501 to R.V.T. J.S.B was supported by a Simons Foundation Early Career Investigator in Marine Microbial Ecology and Evolution award and the US National Science Foundation (NSF-OPP 1821911 and 1846837). R.C. and T.K.-C. acknowledge structural funding to iBB (grants UIDB/04565/2020 and UIDP/04565/2020) from the Portuguese Foundation for Science and Technology (FCT). R.C. acknowledges further funding from FCT and the European Regional Development Fund (ERDF) (grants PTDC/BIA-MIC/31996/2017 and ALG-01-0145-FEDER-031966). T.T. acknowledges support from the Betty and Gordon Moore Foundation. G.R. was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC). B.D. acknowledges support from an NSERC Postdoctoral Fellowship (PDF-558010-2021) and the Ontario Ministry of Agriculture, Food and Rural Affairs (ND2017-3164). A.R. was funded by the Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Niedersachsen, Germany and acknowledges the travel award/young investigator award from the CRC 1182 (DFG). U.H. acknowledges support from the DFG-CRC 1182 TPB01. A.S.R. acknowledges funding from King Abdullah University of Science and Technology (grant BAS/1/1096-01-01).

Author information

Authors and Affiliations

Authors

Contributions

The original discussion about the risk of inaction was initiated as part of a round table of the Beneficial Microorganisms for Corals (BMMO) network organized/developed by R.S.P., M.S., U.H., G.B, L.G, R.C and T.K.-C. at the 15th Symposium on Bacterial Genetics and Ecology (BAGECO). R.S.P, C.R.V and G.B. prepared the original draft. All authors heavily contributed with additional writing, ideas, edits and approval of the final manuscript.

Corresponding author

Correspondence to Raquel S. Peixoto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Maria Gloria Dominguez-Bello, David Relman and Angela Sessitsch for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peixoto, R.S., Voolstra, C.R., Sweet, M. et al. Harnessing the microbiome to prevent global biodiversity loss. Nat Microbiol 7, 1726–1735 (2022). https://doi.org/10.1038/s41564-022-01173-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-022-01173-1

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology