Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Advances in Atmospheric Sciences
  3. Article

Another Year of Record Heat for the Oceans

  • Original Paper
  • Open access
  • Published: 11 January 2023
  • Volume 40, pages 963–974, (2023)
  • Cite this article
Download PDF

You have full access to this open access article

Advances in Atmospheric Sciences Aims and scope Submit manuscript
Another Year of Record Heat for the Oceans
Download PDF
  • Lijing Cheng1,2,
  • John Abraham3,
  • Kevin E. Trenberth4,5,
  • John Fasullo4,
  • Tim Boyer6,
  • Michael E. Mann7,
  • Jiang Zhu1,2,
  • Fan Wang2,8,
  • Ricardo Locarnini6,
  • Yuanlong Li2,8,
  • Bin Zhang2,8,
  • Fujiang Yu9,
  • Liying Wan9,
  • Xingrong Chen9,
  • Licheng Feng9,
  • Xiangzhou Song10,
  • Yulong Liu11,
  • Franco Reseghetti12,
  • Simona Simoncelli13,
  • Viktor Gouretski1,
  • Gengxin Chen14,
  • Alexey Mishonov6,15,
  • Jim Reagan6 &
  • …
  • Guancheng Li16 
  • 12k Accesses

  • 2956 Altmetric

  • 397 Mentions

  • Explore all metrics

Abstract

Changes in ocean heat content (OHC), salinity, and stratification provide critical indicators for changes in Earth’s energy and water cycles. These cycles have been profoundly altered due to the emission of greenhouse gasses and other anthropogenic substances by human activities, driving pervasive changes in Earth’s climate system. In 2022, the world’s oceans, as given by OHC, were again the hottest in the historical record and exceeded the previous 2021 record maximum. According to IAP/CAS data, the 0–2000 m OHC in 2022 exceeded that of 2021 by 10.9 ± 8.3 ZJ (1 Zetta Joules = 1021 Joules); and according to NCEI/NOAA data, by 9.1 ± 8.7 ZJ. Among seven regions, four basins (the North Pacific, North Atlantic, the Mediterranean Sea, and southern oceans) recorded their highest OHC since the 1950s. The salinity-contrast index, a quantification of the “salty gets saltier—fresh gets fresher” pattern, also reached its highest level on record in 2022, implying continued amplification of the global hydrological cycle. Regional OHC and salinity changes in 2022 were dominated by a strong La Niña event. Global upper-ocean stratification continued its increasing trend and was among the top seven in 2022.

摘要

由于人类活动排放温室气体, 全球能量和水循环已经发生了显著的变化, 驱动了气候系统的一系列变异. 海洋热含量、 盐度和层结变化是地球系统能量和水循环的重要指针. 2022 年, 全球海洋上层 2000 米热含量再破记录, 海洋成为有现代记录以来最热的一年. 据中国科学院大气物理研究所的测算, 2022 年 0–2000 米海洋热含量超过 2021 年 10.9 ± 8.3 泽塔焦耳 (1 泽塔焦耳= 1021焦耳). 与之一致, 美国国家海洋和大气管理局国家环境信息中心的测算为 9.1 ± 8.7 泽塔焦耳. 在所研究的 7 个海盆中, 北太平洋、 北大西洋、 地中海、 南大洋这 4 个海盆的 2022 年度热含量均创下了自上世纪 50 年代以来的新记录. 此外, 定量化测算海洋盐度 “咸变咸, 淡变淡” 变化趋势的 “盐度差指数” 也在 2022 年达到过去半世纪以来的最高值, 反映了全球水循环在不断加速. 在区域尺度, 海洋热含量和盐度变化显示出较强的拉尼娜事件的影响. 最后, 全球上层 2000 米海洋层结也持续加强, 2022 年全球海洋层结处于有现代记录以来的第 7 高位.

Article PDF

Download to read the full article text

Similar content being viewed by others

Past and future ocean warming

Article 18 October 2022

Record High Temperatures in the Ocean in 2024

Article Open access 10 January 2025

Another Record: Ocean Warming Continues through 2021 despite La Niña Conditions

Article Open access 11 January 2022

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Biooceanography
  • Climate Change
  • Drought
  • Earth and Environmental Sciences
  • Ocean Sciences
  • Physical Oceanography
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Abraham, J., L. J. Cheng, M. E. Mann, K. Trenberth, and K. von Schuckmann, 2022: The ocean response to climate change guides both adaptation and mitigation efforts. Atmospheric and Oceanic Science Letters, 15, 100221, https://doi.org/10.1016/j.aosl.2022.100221.

    Article  Google Scholar 

  • Abraham, J., and Coauthors, 2013: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys., 51, 450–483, https://doi.org/10.1002/rog.20022.

    Article  Google Scholar 

  • Argo, 2022: Argo Float Data and Metadata from Global Data Assembly Centre (Argo GDAC). SEANOE, https://doi.org/10.17882/42182.

  • Armour, K. C., J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom, 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nature Geoscience, 9, 549–554, https://doi.org/10.1038/ngeo2731.

    Article  Google Scholar 

  • Boyer, T. P., and Coauthors, 2018: World Ocean Database 2018. A. V. Mishonov, Technical Editor, NOAA Atlas NESDIS 87.

  • Cheng, L., and Coauthors, 2022a: Past and future ocean warming. Nature Reviews Earth & Environment, 3, 776–794, https://doi.org/10.1038/s43017-022-00345-1.

    Article  Google Scholar 

  • Cheng, L. J., J. Zhu, R. Cowley, T. Boyer, and S. Wijffels, 2014: Time, probe type, and temperature variable bias corrections to historical expendable bathythermograph observations. J. Atmos. Oceanic Technol., 31(8), 1793–1825, https://doi.org/10.1175/JTECH-D-13-00197.1.

    Article  Google Scholar 

  • Cheng, L. J., G. Foster, Z. Hausfather, K. E. Trenberth, and J. Abraham, 2022b: Improved quantification of the rate of ocean warming. J. Climate, 35, 4827–4840, https://doi.org/10.1175/JCLI-D-21-0895.1.

    Article  Google Scholar 

  • Cheng, L. J., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017a: Improved estimates of ocean heat content from 1960 to 2015. Science Advances, 3, e1601545, https://doi.org/10.1126/sciadv.1601545.

    Article  Google Scholar 

  • Cheng, L. J., K. E. Trenberth, J. T. Fasullo, M. Mayer, M. Balmaseda, and J. Zhu, 2019: Evolution of ocean heat content related to ENSO. J. Climate, 32, 3529–3556, https://doi.org/10.1175/JCLI-D-18-0607.1.

    Article  Google Scholar 

  • Cheng, L. J., K. E. Trenberth, J. T. Fasullo, J. P. Abraham, T. P. Boyer, K. von Schuckmann, and J. Zhu, 2017b: Taking the pulse of the planet. EOS, 98, 14–15, https://doi.org/10.1029/2017EO081839.

    Google Scholar 

  • Cheng, L., K. E. Trenberth, N. Gruber, J. P. Abraham, J. T. Fasullo, G. Li, M. E. Mann, X. Zhao, and J. Zhu, 2020: Improved estimates of changes in upper ocean salinity and the hydrological cycle. J. Clim., 33, 10357–10381, https://doi.org/10.1175/JCLI-D-20-0366.1.

    Article  Google Scholar 

  • Cowley R., and Coauthors, 2021: International Quality-Controlled Ocean Database (IQuOD) v0.1: The Temperature Uncertainty Specification. Front. Mar. Sci. 8:689695. https://doi.org/10.3389/fmars.2021.689695.

    Article  Google Scholar 

  • Ding, Q. H., E. J. Steig, D. S. Battisti, and M. Küttel, 2011: Winter warming in West Antarctica caused by central tropical Pacific warming. Nature Geoscience, 4, 398–403, https://doi.org/10.1038/ngeo1129.

    Article  Google Scholar 

  • Durack, P. J., 2015: Ocean salinity and the global water cycle. Oceanography, 28, 20–31, https://doi.org/10.5670/oceanog.2015.03.

    Article  Google Scholar 

  • Escudier, R., and Coauthors, 2020: Mediterranean Sea Physical Reanalysis (CMEMS MED-Currents) (Version 1) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1.

  • Escudier, R., and Coauthors, 2021: A High Resolution Reanalysis for the Mediterranean Sea. Front. Earth Sci. 9:702285. https://doi.org/10.3389/feart.2021.702285.

    Article  Google Scholar 

  • Fasullo, J. T., and R. S. Nerem, 2018: Altimeter-era emergence of the patterns of forced sea-level rise in climate models and implications for the future. Proceedings of the National Academy of Sciences of the United States of America, 115, 12944–12949, https://doi.org/10.1073/pnas.1813233115.

    Article  Google Scholar 

  • Fasullo, J. T., N. Rosenbloom, R. R. Buchholz, G. Danabasoglu, D. M. Lawrence, and J.-F. Lamarque, 2021: Coupled Climate Responses to Recent Australian Wildfire and COVID-19 Emissions Anomalies Estimated in CESM2, Geo. Res. Lett., https://doi.org/10.1029/2021GL093841.

  • Feng, M., H. H. Hendon, S. P. Xie, A. G. Marshall, A. Schiller, Y. Kosaka, N. Caputi, and A. Pearce, 2015: Decadal increase in Ningaloo Niño since the late 1990s. Geophys. Res. Lett., 42, 104–112, https://doi.org/10.1002/2014GL062509.

    Article  Google Scholar 

  • Fischer, E. M., S. Sippel, and R. Knutti, 2021: Increasing probability of record-shattering climate extremes. Nature Climate Change, 11, 689–695, https://doi.org/10.1038/s41558-021-01092-9.

    Article  Google Scholar 

  • Gouretski, V., and L. J. Cheng, 2020: Correction for systematic errors in the global dataset of temperature profiles from mechanical bathythermographs. J. Atmos. Oceanic Technol., 37(5), 841–855, https://doi.org/10.1175/JTECH-D-19-0205.1.

    Article  Google Scholar 

  • Gouretski, V., L. J. Cheng, and T. Boyer, 2022: On the consistency of the bottle and CTD profile data. J. Atmos. Oceanic Technol., 39(12), 1869–1887, https://doi.org/10.1175/JTECH-D-22-0004.1.

    Article  Google Scholar 

  • Hansen, J., M. Sato, P. Kharecha, and K. von Schuckmann, 2011: Earth’s energy imbalance and implications. Atmospheric Chemistry and Physics, 11, 13421–13449, https://doi.org/10.5194/acp-11-13421-2011.

    Article  Google Scholar 

  • Huang, R. X., L. S. Yu, and S. Q. Zhou, 2018: New definition of potential spicity by the least square method. J. Geophys. Res.: Oceans, 123(10), 7351–7365, https://doi.org/10.1029/2018JC014306.

    Article  Google Scholar 

  • Ishii, M., and M. Kimoto, 2009: Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. Journal Oceanography, 65, 287–299, https://doi.org/10.1007/s10872-009-0027-7.

    Article  Google Scholar 

  • Johnson, G., and Coauthors, 2018: Ocean heat content [in State of the Climate in 2017]. Bull. Amer. Meteor. Soc., 99, S72–S77.

    Google Scholar 

  • Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, https://doi.org/10.1029/2008GL037155.

    Article  Google Scholar 

  • Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106.

    Google Scholar 

  • Li, G. C., L. J. Cheng, J. Zhu, K. E. Trenberth, M. E. Mann, and J. P. Abraham, 2020a: Increasing ocean stratification over the past half-century. Nature Climate Change, 10, 1116–1123, https://doi.org/10.1038/s41558-020-00918-2.

    Article  Google Scholar 

  • Li, X. C., and Coauthors, 2021: Tropical teleconnection impacts on Antarctic climate changes. Nature Reviews Earth & Environment, 2, 680–698, https://doi.org/10.1038/S43017-021-00204-5.

    Article  Google Scholar 

  • Li, Y. L., W. Q. Han, and L. Zhang, 2017: Enhanced decadal warming of the southeast Indian Ocean during the recent global surface warming slowdown. Geophys. Res. Lett., 44, 9876–9884, https://doi.org/10.1002/2017GL075050.

    Article  Google Scholar 

  • Li, Y. L., W. Q. Han, F. Wang, L. Zhang, and J. Duan, 2020b: Vertical structure of the upper-Indian Ocean thermal variability. J. Climate, 33, 7233–7253, https://doi.org/10.1175/JCLI-D-19-0851.1.

    Article  Google Scholar 

  • McPhaden, M. J., 2012: A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett., 39, L09706, https://doi.org/10.1029/2012GL051826.

    Article  Google Scholar 

  • Murakami, H., 2022: Substantial global influence of anthropogenic aerosols on tropical cyclones over the past 40 years. Science Advances, 8, eabn9493, https://doi.org/10.1126/sciadv.abn9493.

    Article  Google Scholar 

  • Nguyen, P. L., S. K. Min, and Y. H. Kim, 2021: Combined impacts of the El Niño — Southern Oscillation and Pacific decadal oscillation on global droughts assessed using the standardized precipitation evapotranspiration index. International Journal of Climatology, 41, E1645–E1662, https://doi.org/10.1002/joc.6796.

    Article  Google Scholar 

  • Nigam, T., and Coauthors, 2021: Mediterranean Sea Physical Reanalysis INTERIM (CMEMS MED-Currents, E3R1i system) (Version 1) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1I.

  • Rahmstorf, S., J. E. Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. J. Schaffernicht, 2015: Exceptional twentieth-Century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 5, 475–480, https://doi.org/10.1038/nclimate2554.

    Article  Google Scholar 

  • Ren, Q. P., Y.-O. Kwon, J. Y. Yang, R.-X. Huang, Y. L. Li, and F. Wang, 2022: Increasing inhomogeneity of the global oceans. Geophys. Res. Lett., 49, e2021GL097598, https://doi.org/10.1029/2021GL097598.

    Article  Google Scholar 

  • Rhein, M., and Coauthors, 2013: Observations: Ocean. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

    Google Scholar 

  • Scannell, H. A., G. C. Johnson, L. Thompson, J. M. Lyman, and S. C. Riser, 2020: Subsurface evolution and persistence of marine heatwaves in the Northeast Pacific. Geophys. Res. Lett., 47, e2020GL090548, https://doi.org/10.1029/2020GL090548.

    Article  Google Scholar 

  • Schmitt, R. W., 1995: The ocean component of the global water cycle. Rev. Geophys., 33(Suppl. 2), 1395–1409, https://doi.org/10.1029/95RG00184.

    Article  Google Scholar 

  • Simoncelli, S., and Coauthors., 2022: A collaborative framework among data producers, managers, and users. In: Manzella, G., Novellino, A. (Eds.), Ocean Science Data: Collection, Management, Networking and Services. Elsevier, pp. 197–280.

  • Trenberth, K. E., and J. T. Fasullo, 2013: An apparent hiatus in global warming? Earth’s Future, 1, 19–32, https://doi.org/10.1002/2013EF000165.

    Article  Google Scholar 

  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311–324, https://doi.org/10.1175/2008BAMS2634.1.

    Article  Google Scholar 

  • Trenberth, K. E., J. T. Fasullo, and M. A. Balmaseda, 2014: Earth’s energy imbalance. J. Climate, 27, 3129–3144, https://doi.org/10.1175/JCLI-D-13-00294.1.

    Article  Google Scholar 

  • Trenberth, K. E., L. J. Cheng, P. Jacobs, Y. X. Zhang, and J. Fasullo, 2018: Hurricane Harvey links to ocean heat content and climate change adaptation. Earth’s Future, 6, 730–744, https://doi.org/10.1029/2018EF000825.

    Article  Google Scholar 

  • Truchelut, R. E., P. J. Klotzbach, E. M. Staehling, K. M. Wood, D. J. Halperin, C. J. Schreck, and E. S. Blake, 2022: Earlier onset of North Atlantic hurricane season with warming oceans. Nature Communications, 13, 4646, https://doi.org/10.1038/s41467-022-31821-3.

    Article  Google Scholar 

  • Vecchi, G. A., C. Landsea, W. Zhang, G. Villarini, and T. Knutson, 2021: Changes in Atlantic major hurricane frequency since the late-19th century. Nature Communications, 12, 4054, https://doi.org/10.1038/s41467-021-24268-5.

    Article  Google Scholar 

  • Volkov, D. L., S.-K. Lee, A. L. Gordon, and M. Rudko, 2020: Unprecedented reduction and quick recovery of the South Indian Ocean heat content and sea level in 2014–2018. Science Advances, 6, eabc1151, https://doi.org/10.1126/sciadv.abc1151.

    Article  Google Scholar 

  • von Schuckmann, K., and Coauthors, 2016: An imperative to monitor Earth’s energy imbalance. Nature Climate Change, 6, 138–144, https://doi.org/10.1038/nclimate2876.

    Article  Google Scholar 

  • von Schuckmann, K., and Coauthors, 2020: Heat stored in the Earth system: Where does the energy go? Earth System Science Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020.

    Article  Google Scholar 

  • Wang, G. J., and Coauthors, 2022: Future Southern Ocean warming linked to projected ENSO variability. Nature Climate Change, 12, 649–654, https://doi.org/10.1038/s41558-022-01398-2.

    Article  Google Scholar 

  • Wernberg, T., D. A. Smale, F. Tuya, M. S. Thomsen, T. J. Langlois, T. De Bettignies, S. Bennett, and C. S. Rousseaux, 2013: An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nature Climate Change, 3, 78–82, https://doi.org/10.1038/nclimate1627.

    Article  Google Scholar 

  • Yu, L. S., S. A. Josey, F. M. Bingham, and T. Lee, 2020: Intensification of the global water cycle and evidence from ocean salinity: A synthesis review. Annals of the New York Academy of Sciences, 1472, 76–94, https://doi.org/10.1111/nyas.14354.

    Article  Google Scholar 

  • Zika, J. D., N. Skliris, A. T. Blaker, R. Marsh, A. J. G. Nurser, and S. A. Josey, 2018: Improved estimates of water cycle change from ocean salinity: The key role of ocean warming. Environmental Research Letters, 13, 074036, https://doi.org/10.1088/1748-9326/aace42.

    Article  Google Scholar 

Download references

Acknowledgements

The IAP/CAS analysis is supported by the National Natural Science Foundation of China (Grant Nos. 42122046 and 42076202) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB42040402). NCAR is sponsored by the US National Science Foundation. The efforts of Dr. Fasullo in this work were supported by NASA Awards 80NSSC17K0565 and 80NSSC22K0046, and by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S. Department of Energy’s Office of Biological & Environmental Research (BER) via National Science Foundation IA 1947282.

The efforts of Dr. A. MISHONOV were supported by NOAA (Grant No. NA19NES4320002 to CISESS-MD at the University of Maryland). The IAP/CAS data are available at http://www.ocean.iap.ac.cn/ and https://msdc.qdio.ac.cn. The NCEI/NOAA data are available at https://www.ncei.noaa.gov/products/climate-data-records/global-ocean-heat-content. This study has been conducted using also E.U. Copernicus Marine Service Information (https://marine.copernicus.eu/) for the Mediterranean OHC estimate. G. Li is supported by the Young Talent Support Project of Guangzhou Association for Science and Technology.

Author information

Authors and Affiliations

  1. International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China

    Lijing Cheng, Jiang Zhu & Viktor Gouretski

  2. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China

    Lijing Cheng, Jiang Zhu, Fan Wang, Yuanlong Li & Bin Zhang

  3. University of St. Thomas, School of Engineering, Minnesota, 55105, USA

    John Abraham

  4. National Center for Atmospheric Research, Boulder, Colorado, 80307, USA

    Kevin E. Trenberth & John Fasullo

  5. University of Auckland, Auckland, New Zealand

    Kevin E. Trenberth

  6. National Oceanic and Atmospheric Administration, National Centers for Environmental Information, Silver Spring, Maryland, 20910, USA

    Tim Boyer, Ricardo Locarnini, Alexey Mishonov & Jim Reagan

  7. Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA

    Michael E. Mann

  8. Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China

    Fan Wang, Yuanlong Li & Bin Zhang

  9. National Marine Environmental Forecasting Center, Ministry of Natural Resources of China, Beijing, 100081, China

    Fujiang Yu, Liying Wan, Xingrong Chen & Licheng Feng

  10. College of Oceanography, Hohai University, Nanjing, 210098, China

    Xiangzhou Song

  11. National Marine Data and Information Service, Tianjin, 300171, China

    Yulong Liu

  12. Italian National Agency for New Technologies, Energy and Sustainable Economic Development, S. Teresa Research Center, Lerici, 19032, Italy

    Franco Reseghetti

  13. Istituto Nazionale di Geofisica e Vulcanologia, Sede di Bologna, Bologna, 40128, Italy

    Simona Simoncelli

  14. South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China

    Gengxin Chen

  15. ESSIC/CISESS-MD, University of Maryland, College Park, MD, College Park, Maryland, 20740, USA

    Alexey Mishonov

  16. Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, PRC, Guangzhou, 510611, China

    Guancheng Li

Authors
  1. Lijing Cheng
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. John Abraham
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Kevin E. Trenberth
    View author publications

    You can also search for this author inPubMed Google Scholar

  4. John Fasullo
    View author publications

    You can also search for this author inPubMed Google Scholar

  5. Tim Boyer
    View author publications

    You can also search for this author inPubMed Google Scholar

  6. Michael E. Mann
    View author publications

    You can also search for this author inPubMed Google Scholar

  7. Jiang Zhu
    View author publications

    You can also search for this author inPubMed Google Scholar

  8. Fan Wang
    View author publications

    You can also search for this author inPubMed Google Scholar

  9. Ricardo Locarnini
    View author publications

    You can also search for this author inPubMed Google Scholar

  10. Yuanlong Li
    View author publications

    You can also search for this author inPubMed Google Scholar

  11. Bin Zhang
    View author publications

    You can also search for this author inPubMed Google Scholar

  12. Fujiang Yu
    View author publications

    You can also search for this author inPubMed Google Scholar

  13. Liying Wan
    View author publications

    You can also search for this author inPubMed Google Scholar

  14. Xingrong Chen
    View author publications

    You can also search for this author inPubMed Google Scholar

  15. Licheng Feng
    View author publications

    You can also search for this author inPubMed Google Scholar

  16. Xiangzhou Song
    View author publications

    You can also search for this author inPubMed Google Scholar

  17. Yulong Liu
    View author publications

    You can also search for this author inPubMed Google Scholar

  18. Franco Reseghetti
    View author publications

    You can also search for this author inPubMed Google Scholar

  19. Simona Simoncelli
    View author publications

    You can also search for this author inPubMed Google Scholar

  20. Viktor Gouretski
    View author publications

    You can also search for this author inPubMed Google Scholar

  21. Gengxin Chen
    View author publications

    You can also search for this author inPubMed Google Scholar

  22. Alexey Mishonov
    View author publications

    You can also search for this author inPubMed Google Scholar

  23. Jim Reagan
    View author publications

    You can also search for this author inPubMed Google Scholar

  24. Guancheng Li
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Lijing Cheng.

Additional information

Article Highlights

• In 2022, the global ocean was the hottest ever recorded by humans.

• The upper 2000 m salinity-contrast index, a quantification of the “salty gets saltier—fresh gets fresher” pattern, also reached its highest level on record in 2022.

• Global upper-ocean stratification continued its increasing trend in 2022 and was among the top seven on record.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as appropriate credit is given to the original author(s) and the source, plus a link to the Creative Commons license, and indications of any changes made. The images or other third-party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and intended use is not permitted by statutory regulation or exceeds the permitted use, the user will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Abraham, J., Trenberth, K.E. et al. Another Year of Record Heat for the Oceans. Adv. Atmos. Sci. 40, 963–974 (2023). https://doi.org/10.1007/s00376-023-2385-2

Download citation

  • Received: 20 December 2022

  • Revised: 09 January 2023

  • Accepted: 10 January 2023

  • Published: 11 January 2023

  • Issue Date: June 2023

  • DOI: https://doi.org/10.1007/s00376-023-2385-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • ocean heat content
  • salinity
  • stratification
  • global warming
  • climate

关键词

  • 海洋热含量
  • 盐度
  • 层结
  • 全球变暖
  • 气候

Profiles

  1. Alexey Mishonov View author profile
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Associated Content

Part of a collection:

Climate and Weather Extremes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature